Distinguished representations of non-negative polynomials
نویسندگان
چکیده
منابع مشابه
Distinguished Representations of Non-negative Polynomials
Let g1, . . . , gr ∈ R[x1, . . . , xn] such that the set K = {g1 ≥ 0, . . . , gr ≥ 0} in Rn is compact. We study the problem of representing polynomials f with f |K ≥ 0 in the form f = s0 + s1g1 + · · · + srgr with sums of squares si, with particular emphasis on the case where f has zeros in K. Assuming that the quadratic module of all such sums is archimedean, we establish a local-global condi...
متن کاملDistinguished positive regular representations
Let $G$ be a tamely ramified reductive $p$-adic group. We study distinction of a class of irreducible admissible representations of $G$ by the group of fixed points $H$ of an involution of $G$. The representations correspond to $G$-conjugacy classes of pairs $(T,phi)$, where $T$ is a tamely ramified maximal torus of $G$ and $phi$ is a quasicharacter of $T$ whose restriction t...
متن کاملRepresentations of non-negative polynomials having finitely many zeros
Let K be a basic closed semialgebraic set in R defined by polynomial inequalities g1 ≥ 0, . . . , gs ≥ 0, where g1, . . . , gs ∈ R[x1, . . . , xn], and let f ∈ R[x1, . . . , xn]. In [12], Schmüdgen proves that, if K is compact and f is strictly positive on K, then f belongs to the quadratic preordering generated by g1, . . . , gs. Denote by M the (smaller) quadratic module generated by g1, . . ...
متن کاملRepresentations of Non-negative Polynomials via the Critical Ideals
This paper studies the representations of a non-negative polynomial f on a non-compact semi-algebraic set K modulo its critical ideal. Under the assumption that the semi-algebraic set K is regular and f satisfies the boundary Hessian conditions (BHC) at each zero of f in K. We show that f can be represented as a sum of squares (SOS) of real polynomials modulo its critical ideal if f ≥ 0 on K. P...
متن کاملRepresentations of Non-negative Polynomials, Degree Bounds and Applications to Optimization
Natural sufficient conditions for a polynomial to have a local minimum at a point are considered. These conditions tend to hold with probability 1. It is shown that polynomials satisfying these conditions at each minimum point have nice presentations in terms of sums of squares. Applications are given to optimization on a compact set and also to global optimization. In many cases, there are deg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2005
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2005.01.043